121 research outputs found

    Social Welfare Maximization Auction in Edge Computing Resource Allocation for Mobile Blockchain

    Full text link
    Blockchain, an emerging decentralized security system, has been applied in many applications, such as bitcoin, smart grid, and Internet-of-Things. However, running the mining process may cost too much energy consumption and computing resource usage on handheld devices, which restricts the use of blockchain in mobile environments. In this paper, we consider deploying edge computing service to support the mobile blockchain. We propose an auction-based edge computing resource market of the edge computing service provider. Since there is competition among miners, the allocative externalities (positive and negative) are taken into account in the model. In our auction mechanism, we maximize the social welfare while guaranteeing the truthfulness, individual rationality and computational efficiency. Based on blockchain mining experiment results, we define a hash power function that characterizes the probability of successfully mining a block. Through extensive simulations, we evaluate the performance of our auction mechanism which shows that our edge computing resources market model can efficiently solve the social welfare maximization problem for the edge computing service provider

    When Mobile Blockchain Meets Edge Computing

    Full text link
    Blockchain, as the backbone technology of the current popular Bitcoin digital currency, has become a promising decentralized data management framework. Although blockchain has been widely adopted in many applications, e.g., finance, healthcare, and logistics, its application in mobile services is still limited. This is due to the fact that blockchain users need to solve preset proof-of-work puzzles to add new data, i.e., a block, to the blockchain. Solving the proof-of-work, however, consumes substantial resources in terms of CPU time and energy, which is not suitable for resource-limited mobile devices. To facilitate blockchain applications in future mobile Internet of Things systems, multiple access mobile edge computing appears to be an auspicious solution to solve the proof-of-work puzzles for mobile users. We first introduce a novel concept of edge computing for mobile blockchain. Then, we introduce an economic approach for edge computing resource management. Moreover, a prototype of mobile edge computing enabled blockchain systems is presented with experimental results to justify the proposed concept.Comment: Accepted by IEEE Communications Magazin

    A Hierarchical Game with Strategy Evolution for Mobile Sponsored Content and Service Markets

    Full text link
    In sponsored content and service markets, the content and service providers are able to subsidize their target mobile users through directly paying the mobile network operator, to lower the price of the data/service access charged by the network operator to the mobile users. The sponsoring mechanism leads to a surge in mobile data and service demand, which in return compensates for the sponsoring cost and benefits the content/service providers. In this paper, we study the interactions among the three parties in the market, namely, the mobile users, the content/service providers and the network operator, as a two-level game with multiple Stackelberg (i.e., leader) players. Our study is featured by the consideration of global network effects owning to consumers' grouping. Since the mobile users may have bounded rationality, we model the service-selection process among them as an evolutionary-population follower sub-game. Meanwhile, we model the pricing-then-sponsoring process between the content/service providers and the network operator as a non-cooperative equilibrium searching problem. By investigating the structure of the proposed game, we reveal a few important properties regarding the equilibrium existence, and propose a distributed, projection-based algorithm for iterative equilibrium searching. Simulation results validate the convergence of the proposed algorithm, and demonstrate how sponsoring helps improve both the providers' profits and the users' experience

    Competition and Cooperation Analysis for Data Sponsored Market: A Network Effects Model

    Full text link
    The data sponsored scheme allows the content provider to cover parts of the cellular data costs for mobile users. Thus the content service becomes appealing to more users and potentially generates more profit gain to the content provider. In this paper, we consider a sponsored data market with a monopoly network service provider, a single content provider, and multiple users. In particular, we model the interactions of three entities as a two-stage Stackelberg game, where the service provider and content provider act as the leaders determining the pricing and sponsoring strategies, respectively, in the first stage, and the users act as the followers deciding on their data demand in the second stage. We investigate the mutual interaction of the service provider and content provider in two cases: (i) competitive case, where the content provider and service provider optimize their strategies separately and competitively, each aiming at maximizing the profit and revenue, respectively; and (ii) cooperative case, where the two providers jointly optimize their strategies, with the purpose of maximizing their aggregate profits. We analyze the sub-game perfect equilibrium in both cases. Via extensive simulations, we demonstrate that the network effects significantly improve the payoff of three entities in this market, i.e., utilities of users, the profit of content provider and the revenue of service provider. In addition, it is revealed that the cooperation between the two providers is the best choice for all three entities.Comment: 7 pages, submitted to one conferenc

    Optimal Pricing-Based Edge Computing Resource Management in Mobile Blockchain

    Full text link
    As the core issue of blockchain, the mining requires solving a proof-of-work puzzle, which is resource expensive to implement in mobile devices due to high computing power needed. Thus, the development of blockchain in mobile applications is restricted. In this paper, we consider the edge computing as the network enabler for mobile blockchain. In particular, we study optimal pricing-based edge computing resource management to support mobile blockchain applications where the mining process can be offloaded to an Edge computing Service Provider (ESP). We adopt a two-stage Stackelberg game to jointly maximize the profit of the ESP and the individual utilities of different miners. In Stage I, the ESP sets the price of edge computing services. In Stage II, the miners decide on the service demand to purchase based on the observed prices. We apply the backward induction to analyze the sub-game perfect equilibrium in each stage for uniform and discriminatory pricing schemes. Further, the existence and uniqueness of Stackelberg game are validated for both pricing schemes. At last, the performance evaluation shows that the ESP intends to set the maximum possible value as the optimal price for profit maximization under uniform pricing. In addition, the discriminatory pricing helps the ESP encourage higher total service demand from miners and achieve greater profit correspondingly.Comment: 7 pages, submitted to one conference. arXiv admin note: substantial text overlap with arXiv:1710.0156

    A Socially-Aware Incentive Mechanism for Mobile Crowdsensing Service Market

    Full text link
    Mobile Crowdsensing has shown a great potential to address large-scale problems by allocating sensing tasks to pervasive Mobile Users (MUs). The MUs will participate in a Crowdsensing platform if they can receive satisfactory reward. In this paper, in order to effectively and efficiently recruit sufficient MUs, i.e., participants, we investigate an optimal reward mechanism of the monopoly Crowdsensing Service Provider (CSP). We model the rewarding and participating as a two-stage game, and analyze the MUs' participation level and the CSP's optimal reward mechanism using backward induction. At the same time, the reward is designed taking the underlying social network effects amid the mobile social network into account, for motivating the participants. Namely, one MU will obtain additional benefits from information contributed or shared by local neighbours in social networks. We derive the analytical expressions for the discriminatory reward as well as uniform reward with complete information, and approximations of reward incentive with incomplete information. Performance evaluation reveals that the network effects tremendously stimulate higher mobile participation level and greater revenue of the CSP. In addition, the discriminatory reward enables the CSP to extract greater surplus from this Crowdsensing service market.Comment: 7 pages, accepted by IEEE Globecom'1
    corecore